The *WH*-island Effect as a Syntactic Phenomenon in Japanese*

Hisashi MORITA

1 Introduction

In addition to the intervention effect in Japanese, which is discussed in Morita (2013), the *wh*-island effect is known to be problematic in terms of grammatical judgment. Consider the following *wh*-island data:

(1) ?? John-wa [Mary-ga nani-o tabeta ka] siritagatteiru no?

-Top -Nom what-Acc ate Q wants.to.know Q

What does John want to know whether Mary ate?

(Takahashi (1993: 657))

(1) is perfectly fine as a Yes/No question, but it is not clear as a *wh*-question. The question is whether the *wh*-expression in the embedded clause can take scope beyond the embedded question, which is considered to be a *wh*-island. Similarly to the judgment of the intervention effect, the grammatical judgment of the *wh*-island effect differs among native speakers of Japanese: Nishigauchi (1990), Watanabe (1992), Yoshida (1999) and Shimoyama (2006) regard it as unacceptable while Lasnik and Saito (1984) and Takahashi (1993) consider it acceptable. What is also noted is that different intonation patterns such as stronger focus on the *wh*-phrase and focus reduction afterwards (Deguchi and Kitagawa (2002) and Ishihara (2002)), use of particular matrix predicates such as *siritagatteiru* (‘want.to.know’) (Yoshida (1999)), or use of D-linked *wh*-expressions (Nishigauchi (1990)) may make the acceptability improve. The fact that extra-syntactic factors such as above affect native speakers’ judgment may suggest that the *wh*-island effect is not syntactic as
Kitagawa (2005) argues. In this paper I am going to claim that the \textit{wh}-island effect in Japanese is a syntactic phenomenon contra Kitagawa (2005). This paper is organized as follows. The remainder of section 1 introduces two types of account to the \textit{wh}-island effect: non-syntactic and syntactic one. Section 2 presents evidence for the syntactic analysis.

1.1 A non-syntactic account of \textit{wh}-island effects: Kitagawa (2005)

Kitagawa (2005) claims that the \textit{wh}-island effect in Japanese is not a syntactic but extra-syntactic phenomenon. In other words, there is no \textit{wh}-island in Japanese comparable to the one in English. Following Deguchi and Kitagawa (2002) and Ishihara (2002), Kitagawa (2005) argues that if a proper intonation called Emphatic Prosody (EPD) is applied, then both readings are possible. According to EPD, “post-focal reduction” starts from a \textit{wh}-expression and the end of it marks the scope of a question.

He also notes that the difficulty of obtaining the matrix scope reading of a \textit{wh}-expression within a \textit{wh}-island normally arises for an informant when an example is presented in writing and the informant reads it in silent reading. He claims that in such a situation a default EPD is applied. According to him, the default EPD ends at the end of the embedded clause, which he calls Local EPD, as follows:

\begin{align*}
(2) \left[\text{CP John-wa}\ [\text{CP Mary-ga nani-o tabeta ka} \text{ siritagatteiru no}] \right] ? \\
\text{Local EPD}
\end{align*}

If EPD is assigned as above, \textit{nani} ‘what’ scopes over the embedded clause resulting in a Yes/No question. When informants are asked for grammatical judgment of the example, they read it silently and, as a result, the default EPD as in (2) is formed. This is why they have difficulty getting the matrix scope reading of \textit{nani}. However,
if the example is read aloud and EPD continues until the end of the matrix clause, which he calls Global EPD, as in (3), then the matrix scope of the wh-expression is available.

(3) \[\text{CP John-wa [CP Mary-ga nani-o tabeta ka] siritagatteiru no]}? \]
Global EPD

In (3), post-focal reduction lasts until the end of sentence, so that the matrix scope interpretation is more easily available than without Global EPD.

Kitagawa argues that the post-focal reduction region is monotonous and people want to avoid monotonous phases, so that they tend to make EPD as short as possible. This is why Local EPD rather than Global EPD is preferred. In this way he attributes the difficulty of the matrix scope reading of wh-expressions within wh-islands to a certain bias in silent reading; hence, he argues that there is no (syntactic) wh-island in Japanese.

However, as Kitagawa (2005: 333) himself admits, there are cases where Global EPD is not sufficient to trigger the matrix scope reading, which may indicate that something more is involved. Consider the following question and necessary context, both of which are from Kitagawa (2005: 333, slightly adapted):

(4) Satou-kun-wa [Suzuki-kun-ga nani-o tabeta-kaddocka] oboeteimasu ka?
Mr. Sato-Top Mr. Suzuki-Nom what-Acc ate whether remember Q
‘What, is such that Mr. Sato remembers whether or not Mr. Suzuki ate it,?’
(5) Mr. Suzuki is suffering from food poisoning and the identity of some specific food item as its cause is being sought. Mr. Sato is believed to remember whether or not Mr. Suzuki ate some specific food item, which may be the crucial piece of information. In quest of the identity of this food item, the question in (4) [= (33) in the original paper] was asked of the person who is believed to know the answer.

Kitagawa (2005) claims that the matrix scope interpretation of nani ‘what’ in (4) is difficult even if Global EPD is assigned. He argues that in addition to Global EPD, contextual information such as (5) is necessary. However, the contents of (5) is so specific that one cannot imagine them easily when judging the example, which is why many people feel that examples violating wh-island effects are ungrammatical in null context. Since EPD and context affect the availability of interpretation, Kitagawa concludes that there is no syntactic wh-island effect in Japanese.

Although I agree with Kitagawa (2005) in that extralinguistic factors such as context and intonation make the matrix reading easier, there are a few reasons to believe that the wh-island effect as a syntactic constraint exists in Japanese as in other languages. I will mention one here and the others in the next section. That is, if it is a mere bias to prefer Local EPD to Global EPD in silent reading, it should be easy to pronounce the sentence in Global EPD when reading aloud. But this is not a simple task because even if one tries to pronounce in Global EPD by reading aloud, pronouncing in such a way does not necessarily lead to the right interpretation as Kitagawa claims. It is not clear why extra-syntactic factors such as EPD have such a strong influence on syntactic derivations in the current model of syntax where syntactic representations are fed into PF and LF, not vice versa. In the next section I will show that syntactic changes such as addition of certain particles to wh-expressions and dropping of a question particle can facilitate the matrix interpretations, which suggests that the wh-island effect is syntactic.
1.2 A syntactic account

A typical syntactic account claims that the *wh*-island effect arises due to violation of the Minimal Link Condition (MLC), which requires a *wh*-expression to enter into a syntactic relation such as Agree with the closest c-commanding C in the current case. Thus, if the condition exists in Japanese, the matrix interpretation of *nani* ‘what’ in (1) is expected to be unavailable. However, although the judgment is not clear and can differ among native speakers, some argue that the matrix interpretation is available. In Morita (2013), I have shown that a similar situation arises in the case of the intervention effect in Japanese, and have claimed that the reason for judgment variability is due to the fact that there are two types of *wh*-questions: one derived with Agree called Agree *wh*-question and the other with binding called binding *wh*-question. The choice of a *wh*-question type is largely influenced by non-syntactic factors such as context, so that people make different judgment if no contextual information is given. Specifically, the intervention effect may arise when one chooses to derive an Agree *wh*-question due to the violation of the MLC, whereas the intervention effect never surfaces when one decided to derive a binding *wh*-question because there is no Agree between C and *wh*-expressions in this type of *wh*-questions. Without contextual information, one prefers to employ Agree *wh*-questions rather than binding *wh*-questions. However, some are better at creating appropriate context for binding *wh*-questions than others; therefore, the former group would accept the sentences while the latter would continue to regard them unacceptable. Hence, people make different judgment. The same account applies to the *wh*-island effect in Japanese.¹

2 Evidence for the syntactic analysis of the *wh*-island effect

In this section I would like to present three pieces of evidence for the syntactic analysis: (i) availability of multiple-pair interpretations, (ii) contextual aid, and (iii) focus particles.
2.1 Availability of multiple-pair interpretations

Dayal (2002) argues that multiple-pair readings from multiple ‘which-NP’ expressions arise when both overtly moved and in-situ wh-expressions are in C at LF (i.e. Agreed wh-questions), whereas only single-pair readings are available when wh-expressions do not move to spec of C; in other words, a binding mechanism is applied to wh-expressions (i.e. binding wh-questions). Consider the following two examples and their possible answers from Dayal (2002: 512):

(6) Which professor likes which linguist?

(7) Which linguist will be offended if we invite which philosopher?

According to Dayal (2002), sentences such as (6) may generate multiple-pair readings, and hence, an answer such as ‘Professor Smith likes Professor Brown and Professor King like Professor Matthew’ is a possibility. In contrast, sentences such as (7) allow only single-pair readings, so that only one pair such as ‘Professor Smith will be offended if we invite Professor Brown’ is possible. Dayal claims that the reason of why multiple-pair readings are unavailable in (7) is that the in-situ wh-expression cannot reach the matrix C due to the subjacency condition.

One significant fact is the employment of which NP in the examples above. This kind of wh-expressions normally requires a single referent as an answer. Consider the following English and Japanese examples:

(8) Which teacher came to the party yesterday?

(9) Dono sensee-ga paatii-ni kimasita ka
 which teacher-Nom party-to came Q
 ‘Which teacher came to the party?’
In both of the questions, only one teacher is presupposed to have been to the party. However, as Higginbotham and May (1981) and Dayal (2002) note, more than one which NP in a question makes the above presupposition disappear as the following examples show:

(10) Which teacher came to which party yesterday?

(11) Dono sensee-ga dono paattii-ni kimasita ka

which teacher-Nom which party-to came Q

‘Which teacher came to which party?’

It is possible to answer these questions by saying ‘Mr. A came to John’s party, Mr. B came to Mary’s party, …’ Moreover, according to Dayal (2002), both wh-expressions must be in C at LF to generate multiple-pair readings.

As discussed in the previous section, there are two types of wh-questions: Agreed and binding wh-questions. The former is derived through Agree while the latter is generated through binding. As a result, only the first type is subject to the wh-island effect. What is more, if Dayal (2002) is correct, only the first type may generate multiple-pair readings because there is no wh-movement in binding wh-questions. Therefore, it is predicted that wh-questions which elude the wh-island effect never allow multiple-pair interpretation.

The prediction is borne out, which is noted in Kitagawa and Tomioka (2004) and Kitagawa, Roehrs, and Tomioka (2004). Consider the following example (Kitagawa and Tomioka, 2004: 319):
(12) Supo-Niti-wa [dono-kyuudan-ga dono-yuuboo-senshu-o
Japan-Sports-Top which-ball.club-Nom which-promising-player-Acc
itii-simee-siyooto-siteiru-kadooka] siritagatteiru no?
intend.to.select.as.No.1-whether want.to.know C
‘With respect to which ball club does Sports Nippon want to know if it
will select which promising player as No.1 draft pick?’
(*multiple-pair)

As noted in Watanabe (1992), kadooka ‘whether’ and wh-expressions cannot be
interpreted in the same clause; therefore, the wh-expressions in the embedded
clause can only take the matrix scope in (12). I agree with their judgment in this
example in that (12) does not permit multiple-pair interpretations. In contrast, if
there is no wh-island, a multiple-pair answer is possible as in (13):

(13) a. Supo-Niti-wa [dono-kyuudan-ga dono-yuuboo-senshu-o
Japan-Sports-Top which-ball.club-Nom which-promising-player-Acc
itii-simee-siyooto-siteiru to] tutaeta no?
intend.to.select.as.No.1 C reported C
‘Which ball club did Sports Nippon report will select which
promising player as No.1 draft pick?’

b. [Giants-ga Kobayasi-senshu-o, Dragons-ga Tanaka-senshu-o,
 Tigers-ga Okubo-senshu-o itii-simee-siyooto-siteiru to] tutaeteimasu
 -Nom -player-Acc -Nom -player-Acc
 ‘It reported that the Giants would choose Kobayashi, the Dragons
 would choose Tanaka, and the Tigers would choose Okubo, as their
 first choice.’
These facts further support that there are two types of *wh*-questions in Japanese. Specifically, neither of the *wh*-expressions in (12) go through *wh*-movement because they are not operators, whereas both of the *wh*-expressions in (13) go through *wh*-movement because they are operators.

In fact, Kitagawa and Tomioka (2004) and Kitagawa, Roehrs, and Tomioka (2004) argue that (covert) syntactic movement of only one *wh*-expression is necessary to generate multiple-pair readings. (For them, syntactic *wh*-movement is unnecessary to derive *wh*-questions.) Accordingly, they argue that if one *wh*-expression is outside a *wh*-island, multiple-pair readings are possible, which I do not agree with. Consider their example (Kitagawa and Tomioka (2004: 321)):

(14) Rekidaino dono-daitooryoo-ga [dono-tosi-ni sensoo-ni totunyyu-subeki past which-President-Nom which-year-in war-to go-should kadooka] sinkenni kentoosita no? whether seriously considered C

‘Which President, past or present, seriously considered whether to go to war in which year?’

In (14), the *wh*-expression in the matrix clause goes through covert movement to the spec of the matrix C, and this movement is sufficient to have multiple-pair readings according to Kitagawa and Tomioka (2004) and Kitagawa, Roehrs, and Tomioka (2004). As for the *wh*-expression in the embedded clause, it cannot, and hence, does not move due to the presence of *kadooka* ‘whether’.

As they argue, the example above seems to allow a multiple-pair interpretation. However, *dono-toshi-ni* ‘which-year-in’ is actually ambiguous in terms of its position: it may be inside or outside the *wh*-island. To disambiguate the example, I have added a phrase as follows:
(15) Rekidaino dono-daitooryoo-ga [amerika-ga dono-tosi-ni sensoo-ni past which-President-Nom America-Nom which-year-in war-to totunyuu-subeki kadooka] sinkenni kentoosita no?
go-should whether seriously considered C
‘Which President, past or present, seriously considered whether America should have gone to war in which year?’ (*multiple-pair)

I have inserted amerika-ga ‘America-Nom’ between the two wh-expressions, so that dono-toshi-ni ‘which-year-in’ must be inside the wh-island. In this example, no multiple-pair reading is available, which shows that not simply one but both wh-expressions must be raised to the same C to generate multiple-pair readings as Dayal (2002) argues. This fact is expected under the present proposal because the existence of a wh-island forces the wh-expression within to be a non-operator, and this prevents their wh-movement to the matrix C, and hence, unavailability of multiple-pair readings.

To summarize so far, availability of multiple-pair readings shows whether an Agreed or a binding wh-question is employed. This fact indicates that if an Agreed wh-question is adopted, the wh-island effect cannot be canceled. Consequently, the conception that the wh-island effect is sometimes lifted in Japanese is not appropriate. If non-operator wh-expressions are chosen in a numeration (i.e. binding wh-questions), no wh-island effect will surface as in 0. However, if operator wh-expressions are employed (i.e. Agreed wh-questions), they will go through Agree with the closest interrogative C. Therefore, as long as operator wh-expressions are concerned, they will never be able to take scope outside wh-islands. This fact indicates that the wh-island effect indeed exists as a syntactic principle contra Kitagawa (2005).

Moreover, although it has been claimed that additional wh-expressions after a wh-island cancel wh-island effects, they do not nullify the effects, because the
availability of multiple-pair readings disappears too. Consider the following question:

(16) John-wa[Mary-ga dono ryori-o tabeta kadooka]dono hito-ni tazuneta no?
 -Top -Nom which dish-Acc ate whether which person-Dat asked Q
 ‘Which person did John ask whether Mary ate which dish?’

(*multiple-pair)

According to Watanabe (1992), addition of a *wh*-expression outside a *wh*-island makes it easier to construe the matrix reading of a *wh*-expression inside the island, which is called additional-*wh* effects. In (16), the addition of *dono hito-ni* ‘which person-Dat’ outside the *wh*-island helps the matrix scope reading of *dono ryori-o* ‘which dish-Acc’. However, multiple-pair readings are unavailable in (16),

which suggests that the *wh*-expression within the *wh*-island (as well as the other *wh*-expression in the matrix clause) does not go through *wh*-movement to the matrix spec-C. In other words, since the *wh*-expression is not a real *wh*-operator, no *wh*-island effect is observed. Hence, although additional *wh*-expressions outside a *wh*-island may help us to construe the *wh*-question as Global EPD as Ishihara (2002) and Kitagawa (2005) suggest,

they do not lift the *wh*-island effect, but they simply induce one type of *wh*-questions which does not require movement of *wh*-expressions.

2.2 Contextual aid

Although I agree that extra-syntactic factors such as context affect availability of the *wh*-island effect, I will show that the fact is compatible with the present claim. In fact, the present syntactic account can predict what kind of context generates binding *wh*-questions.

Consider the following question and necessary context, both of which are
from Kitagawa (2005: 333, slightly adapted) and repeated below:

(17) Satou-kun-wa [Suzuki-kun-ga nani-o tabeta-kadooka] oboeteimasu ka?
 Mr. Sato-Top Mr. Suzuki-Nom what-Acc eat whether remember Q
 ‘What is such that Mr. Sato remembers whether or not Mr. Suzuki ate it?’

(18) Mr. Suzuki is suffering from food poisoning and the identity of some specific food item as its cause is being sought. Mr. Sato is believed to remember whether or not Mr. Suzuki ate some specific food item, which may be the crucial piece of information. In quest of the identity of this food item, the question in (17) [= (33) in the original paper] was asked of the person who is believed to know the answer.

As discussed in section 0, Kitagawa (2005) claims that not only Global EPD but also specific context such as (18) is necessary to escape the wh-island for some examples such as (17). However, he does not explain how such context is derived and why it is necessary to allow the wh-expression to take the matrix scope.

According to the present proposal, (17), if nani takes the matrix scope, is a binding wh-question, and hence, the wh-expression is not an operator and no wh-island effect is observed. The interpretation of the question is the following:

(19) What is an x such that Mr. Sato remembers whether or not Mr. Suzuki ate thing(x)]?

As (19) shows, the wh-expression nani is simply a restriction with a variable, thing(x). Its quantificational force is assumed to arise through binding by the matrix C. When asking a question such as (19), it presupposes that there is a thing such that the Mr. Sato remembers whether or not Mr. Suzuki ate it, which is a key
element (the underlined part) in (18). Therefore, the present claim is capable of predicting appropriate context even in \textit{wh}-island cases.

2.3 Focus particles
As discussed in Morita (2013), if a focus particle, which normally causes the intervention effect, is directly attached to a \textit{wh}-expression, no intervention effect is observed, which is attributed to the claim that a \textit{wh}-expression with a focus particle can be licensed only through binding of C. The same phenomenon is observed in the \textit{wh}-island effect. Consider the following sentences with a \textit{wh}-island and with an intervention effect:

(20) a. Ken-\text{wa} [Mary-\text{ga} doko-\text{ni itta ka}] sitteiru no?
 -\text{Top} -\text{Nom} where-to went Q know Q
 ‘Does Ken know where Mary went?’

 b. Ken-\text{wa} [Mary-\text{ga} doko-\text{sika} ikanakatta ka] sitteiru no?
 -\text{Top} -\text{Nom} where-to-only go.not.past Q know Q
 ‘(Lit.) Does Ken know whether Mary went only where?’

(21) *Mary-\text{sika} doko-\text{ni } ikimasendesita ka.
 -only where-to go.polite.not.past Q
 ‘Where did only Mary go?’

(20)a is a typical case of \textit{wh}-island; that is, the matrix interpretation of \textit{doko} ‘where’ is sometimes extremely hard to obtain even with Global EPD. As Kitagawa (2005) argues, provision of contextual information is desirable. In contrast, in (20)b, an intervener particle, \textit{sika} ‘only’, is attached directly to a \textit{wh}-expression. As seen in (21), it usually causes an intervention effect if it c-commands a \textit{wh}-expression. Interestingly, if \textit{sika} is directly attached to a \textit{wh}-expression (and presumably c-commands the \textit{wh}-expression), the matrix interpretation of \textit{doko} ‘where’ is easily
available without contextual information even in silent reading unlike (20)a. This is because a \textit{wh}-expression with an intervener has no choice but to function as a non-operator. Moreover, this disambiguation process makes it much easier to interpret (20)b than (20)a.

Here are more examples:

(22) Ken-wa [Mary-ga nani-o tabeta ka] sitteiru no?
 -Top -Nom what-Acc ate Q know Q
 ‘(Lit.) Does Ken know whether Mary ate at least what?’
 ‘(??) What does Ken know if Mary ate?’

(23) Ken-wa [Mary-ga nani-wa tabeta ka] sitteiru no?
 -Top -Nom what-at.least ate Q know Q
 ‘(Lit.) Does Ken know whether Mary ate at least what?’
 ‘At least what does Ken know if Mary ate?’

(24) Ken-wa [Mary-ga nani-sae tabeta ka] sitteiru no?
 -Top -Nom what-even ate Q know Q
 ‘(Lit.) Does Ken know whether Mary ate even what?’
 ‘Even what does Ken know if Mary ate?’

(25) Ken-wa [Mary-ga nani-dake-o tabeta ka] sitteiru no?
 -Top -Nom what-only-Acc ate Q know Q
 ‘(Lit.) Does Ken know whether Mary ate only what?’
 ‘Only what does Ken know if Mary ate?’

If an intervener particle is directly attached to a \textit{wh}-expression, the \textit{wh}-expression becomes a non-operator. Hence, its variable can be bound by the matrix C, so that the matrix reading of the \textit{wh}-expression is easily available. The matrix scope interpretation of a \textit{wh}-expression in (23), (24), and (25) is very easy to access (even without contextual aid). In contrast, it is very difficult in (22), where no intervener
The WH-island Effect as a Syntactic Phenomenon in Japanese

particle is attached to a wh-expression, because of the ambiguous status of the wh-expression and preference for Agreed wh-questions in null context.

Moreover, the absence of multiple-pair readings supports the above claim that wh-expressions with focus particles can be licensed only through binding by C. Examine the following example:

(26) Dono sensei-ga dono seito-sika sikaranakatta no?

which teacher-Nom which student-only didn’t.scold Q

‘Which teacher scolded only which student?’ (*multiple-pair)

As discussed in the previous subsection, the lack of multiple-pair readings suggests that wh-expressions there are not operators, and (26) does not permit multiple-pair readings. Hence, this evidence supports the claim that when intervener particles are directly attached to wh-expressions, the latter cannot help but serve as non-operators.

The discussion here, if correct, seriously casts a doubt on Kitagawa’s (2005) claim that the wh-island effect in Japanese is not syntactic because what extralinguistic factors affect is not the derivation itself but lexical choice (i.e. operator vs. non-operator wh-expressions). Therefore, the current syntactic model needs no change.

Notes
* This work is supported by JSPS KAKENHI Grant Number 24720181.

1 Hagstrom’s (1998) account is the first one to incorporate wh-islands into intervention effects. However, there is a minor difference between the two effects. Compare the following schematic (not linear but) hierarchical representations for the intervention and the wh-island effect:
(i) The intervention effect

* C focus particle wh
 (probe) (goal) (goal)

(ii) The wh-island effect

* C(matrix) C(embedded) wh
 (probe) (probe) (goal)

Both the intervention and the wh-island effect arise due to the violation of the MLC in that a wh-expression cannot enter into Agree with the designated C. Nonetheless, the intervener in the intervention effect serves as the wrong goal whereas one in the wh-island effect serves as the wrong probe.

Kitagawa and Tomioka (2004: 317-8) and Kitagawa, Roehrs, and Tomioka (2004: 3-4) do not recommend the use of direct questions to determine the availability of multiple-pair readings because of the possibility of a “cooperative answer”. For example, questions such as “What/which movies did the boys rent last night?” seem to allow multiple-pair answers such as “John rented ‘Casablanca’ and Bill rented ‘Titanic’”. If such an answer may be derivable from “The boys rented ‘Casablanca’ and ‘Titanic’, it is not a real multiple-pair answer. Thus, they recommend direct questions to be embedded under “list” verbs such as list and risutoni.suru ‘list’ in Japanese as in “He listed which students/*which student left early,” and “He listed which student greeted which professor.” However, as Dayal (2002) argues, the use of which NP does not allow “cooperative answers”, and hence, its use in direct questions is appropriate. Furthermore, the Japanese “list” verb, risutoni.suru, allows multiple-pair readings even if there is only one which NP as follows:

(i) [Dono seito-ga kon gakki akaten-o tottaka] ristutoni.site mimashoo.
 which student-Nom this term F.Acc got list let’s
 ‘Let’s list which student got F’

(i) can be naturally uttered even if there is more than one student who failed in the exams. Accordingly, the use of risutoni.suru does not give us a correct result, and
hence, the use of indirect questions is not necessarily recommended.

3 However, as discussed in the main text, Kitagawa and Tomioka (2004) and Kitagawa, Roehrs, and Tomioka (2004) make the opposite judgment.

4 This is because an additional *wh*-expression after the *wh*-island constitutes its own EPD, so that the two independent EPDs may be perceived as one Global EPD (see for Ishihara (2002) and Kitagawa (2005) for details). Moreover, this misperception prevents the *wh*-expression within the *wh*-island from taking the embedded scope.

5 Similarly, Richards (1997) presents examples where no *wh*-island violation is observed due to additional *wh*-expressions and proposes the principle of minimal compliance, which basically says that if one *wh*-expression satisfies subjacency conditions such as *wh*-island effects, other *wh*-expressions may be immune to the same conditions. However, as far as Japanese *wh*-questions are concerned, the principle is unattested.

6 Moreover, global EPD is available without effort.

7 Another example is the following:

(i) Ken-wa [(Mary-ni kuwaete) dono ko-mo tatakareta ka] sitteiru no?

 ‘(Lit.) Ken knows whether which child too was hit (in addition to Mary)’

It is normally considered that a *wh*-expression with *mo* turns into a universal quantifier and intervener. But as the example above shows, the *wh*-element *dono ko* ‘which child’ can be interpreted as a *wh*-expression and take the matrix reading. This fact is also explained because the *wh*-expression is not an operator there. However, the intended reading of (i) is slightly harder to obtain than that of (20)b, presumably because *sika*, which can block Agree between C and a *wh*-expression, does not change the semantic status of *wh*-expressions whereas *mo* can affect the interpretation of *wh*-expressions, and hence, a competition between the two readings of (i) may confuse the speakers if no contextual information is given.

- 35 -
Similarly, *wh*-expressions with focus particles can escape *mo*, which normally turn *wh*-expressions into universal quantifiers. Examine the following sentences:

(ii) Ken-wa [nani-o tabeta] hito-mo sitteiru no?
-Top what-Acc ate person-MO know Q
‘Does, for every x, Ken know a person who ate x?’

(iii) Ken-wa [nani-sae/-wa/-dake tabeta] hito-mo sitteiru no?
-Top what-even/-at.least/-only ate person-MO know Q
‘(Lit.) Ken also knows a person who ate even/at least/only what?’

As Shimoyama (2006) argues, a *wh*-expression is normally licensed by the closest c-commanding licensor, which is *mo* in (ii). Thus, the *wh*-element in (ii) is interpreted as a universal quantifier. But as (iii) shows, the *wh*-element with the focus particles are not operators, so that they are not licensed by *mo*. Accordingly, the *wh*-element is interpreted as a *wh*-expression in (iii).

References

